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ABSTRACT

A time-split finite difference scheme for the compressible Navier-

Stokes equations is presented and discussed. The scheme is suited for use

on vector pipeline processors and has been implemented on the Control Data

Corporation STAR-IO0 and CYBER 203 vector processor. The scheme was used

to solve for the steady laminar flow in a two-dimensional converging-

diverging nozzle with suction slots. The scheme has three splittings, two

one-dimensional hyperbolic schemes for the inviscid terms and a parabolic

scheme for the viscous terms.
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i. INTRODUCTION

This paper presents a time-split difference scheme for solving the

compressible Navier-Stokes equations and describes the implementation of

that scheme on the Control Data Corporation STAR-IO0 vector processor.

Results are presented of computations which use that scheme to compute

the laminar flow in converging-diverging nozzles with sunction slots.

The scheme is highly vectorizable and suitable for pipeline processors.

An interesting feature of the application is that the computational grid

is not rectangular but rather two rectangular regions joined along part

of one side.

The scheme has been used to compute flows in both two-dimensional

and axisymmetric nozzles. The nozzles were either conventional converging-

diverging Laval nozzles or nozzles with suction slots located ahead of

the throat. The purpose of these computations was to aid in the design

of the quiet wind tunnel being developed at NASA Langley Research Center,

e.g. Beckwith (1975), Anders, et al. (1977).

This work appears to be the first that uses the full Navier-Stokes

equations to solve for the flow in a nozzle at high Reynolds number. In

related work, Cline (1976) has used the full Navier-Stokes equations for

nozzles at lower Reynolds numbers. Various researchers have employed the

slender-channel approximation for nozzles, e.g. Rae (1971) and Mitra and

Fiebig (1975); however, the nozzles treated in this paper are not slender

enough to be amenable to slender channel approximations. Thomas (1979) uses

the Navier-Stokes equations with the parabolic approximation for three-

dimensional flows in non-axisymmetric nozzles.

A modification of the method described in this paper has also been

used to compute the flow at a wing-elevon junction. This work will be

described in a forthcoming report by Walsh and Strikwerda (1980).

I
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Time-split difference schemes have been presented by several authors.

Strang (1968) and Gottlieb (1972) have discussed time-spilt difference

schemes for general hyperbolic and parabolic systems and MacCormack (1971)

and Abarbanel and Gottlieb (1980) presented tlme-split schemes for the

compressible Navier-Stokes equations. The scheme presented here differs

from that of MacCormack in that the viscous terms are split from the inviscid

terms. The viscous terms are not split further as advocated by Abarbanel

and Gottlieb (1980).

2. THE DIFFERENCE SCHEME

The difference scheme for the Navier-Stokes equations is a time-split

scheme with three splittings. One splitting encompasses the parabolic or

viscous terms and two splittings are for the hyperbolic or inertial terms, one

for each direction. (For the three-dimensional equations a fourth splitting

would be added for the inertial terms in the extra dimension.) Each of the

corresponding operators is of the predictor-corrector type. The total scheme

can be described as a set of three operators applied in sequence so as to

be consistent and second-order accurate.

Before describing the difference scheme in detail, we discuss time-

splitting in a more general setting, (see also Gottlieb (1972), Strang (1968)).

Consider an evolution equation

ut = Au + Bu + Cu , (i.i)

where

time

by

A, B, and C are linear operators of some type. Then given u at

to to compute u at to + At, we may approximate the above equation
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= 1
ut 3Au for t o <__t < to + _ At,

1 2
ut = 3 Bu for t O+ _ At <_ t < to + _ At,

2

ut = 3Cu for to + _ At _< t _< tO + At.

In this way, the exact solution u(t 0+At), which may be written as

(A+B+C)At
e u(t 0) , (1.2)

is approximated by

eCAteBAteAAtU(to ) " (1.3)

Unless the operators A, B, and C commute the expression (1.3) is not equal

to the exact solution (1.2), but will be an approximation to within 0(At2).

Strang (1968) has shown that by reversing the order of the splitting in

the next time step u(t 0+ 2At) can be approximated to within 0(At 3) and

thus the overall method is second-order accurate in time. When the operators

A, B, and C are differential operators and are approximated by difference

operators and are approximated by difference operators then the above approach

gives rise to a time-split finite difference scheme.

The Navier-Stokes equations for two dimensions may be written as

U t + F + G - V = 0,x y

where
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U

3U

3V

E

I pu

pu 2 + p

F=

Ouv

(E+ p)u

pv10uv

Ov 2 + p

(E+ p)v

and

V

/ o_-_ +xx _y xy

+_
_--_Txy -_y Tyy

_---_ _ + VT /

(UT_xx + VTxy) + _y(UTxy yy)

c _ _T) _ _T
+P_ (_(_ +_y(_Tu )

where

4 Su 2 _v
T =
xx _ _x 3_a-yy '

_u _v

Txy = _-_y + D _x

4 _v 2 _u

yy -3 _y 3 _x

The equation of state is

P = 0 T Cv(Y-l) ,
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and the viscosity is given by Sutherland's law.

The energy E is defined by

E = O(CvT+ ½(u2+v2)).

, is theThe gas constant y is 1.4, the Prandtl number o is .72 cv

coefficient of specific volume. The vectors F and G represent the

inertial effects of the flow and V represents the viscous forces. The

three splittings used in the schemecorrespond to the terms Fx, Gy, and

V.

Considering first the viscous terms, the system to be integrated

1
for a step of size _ At can be written

1
Pt = o,

1 4 2

OU t = _(_Ux) x + (_Uy)y - _(_Vy) x + (_Vx)y,

i 2 4

-_ pv t = (_Uy)x - -_(_]Ux)y + (_Vx) x + -_(_Vy)y,

1
PCvT

t
= (kTx) x + (kTy)y + _,

(2.1)

where

= 2D{u_ + v2 i 2} 2y-_(Ux+Vy) + _(u +v x) ,

k = Cp_/d.

The subscripts t, x, and y denote differentiation.
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Wenow rewrite the equations in terms of the independent variables

(_,q). The mapping from the physical (x,y) coordinates to the computa-

tional (_,q) coordinates will be described in more detail in the appendix,

but for now it is sufficient to write it as

= _(x) q = rl(x,y).

In the transformed coordinates the equation for u is

1 4 4
Put = -_ _x(_xU_)_ + -_ rlx(P_xU$)rl

4 4

+ _ _x(UnxUq)E + _ qx(UnxUn)n

+ r}y(Pqy L_) rl (2.2)

2 2

_x(pq} vq)q- _ qx(PqyVq)q

+ qy(_xV_)q + qy(PqxVD)q-

The equations for v and T are also transformed. The differencing of the

above equations will be illustrated using only the first two terms on the

right hand side of the above equation since the other terms are differenced

in a similar manner. The first term is differenced as

I ui,j- Ui_l,j iUi+l'J- ui'j - (P_x) A_ / /A_(¢x) i (_x) i+_,j _ A_ i-½,j "
(2.3)

where (p_x)i+½,j = ½(_i,j (_x)i + Pi+l,j (_x)i+l) and
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(_x)i = _x(_i )' _i,j -- _(Ti,j)" The second term on the right-hand side of

equation (2.2) is differenced as

I iui+i'J+i - ui-i'J+ili,j (_x)i,j+l \ 2A_ /

/ui+i,j-i- ui-i,j-i_ _ i
- (_x)i,j-l_ 2A$ _ _ 2AN '

(2.4)

Denoting the difference operator for the right-hand side of equation

(2.1) by V, the algorithm for the viscous terms can be written as

Wi,j = W. + At Vi (W)i,j ,j '

Wi, j : i{Wi, j +W i,j+At V i,j(W)},

(2.5)

where

Note that the factor of 1/3 on the left of equation (2.1) cancels with the

1/3 factor from the time step of 1/3 At. This defines the viscous splitting

operator Sv(At) , i.e.

W : Sv(At)W. (2.6)

The hyperbolic portion of the splitting for the two-dimensional equations
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can be written as

2
-- + G = 0,3 Ut + Fx Y (2.7)

where

Pu Pu2 + P f_uv

U= pv ' F = _ puv ' G = Pv2 + P
E \ (E+p)u (E+p)v /

Using the coordinate transformation (2.2) the equations in the (_,q)

coordinates become

2 Ut + SxF_ + qxF n + NyG = 0 (2.8)

Equation (2.8) is split into the two one-dimensional systems

i

U t + _xF_ = 0 ,
(2.9)

and

1
U t + qxF n + NyG n = 0.

(2.10)

The difference scheme for equation (2.9) is

Ui,j = Ui,j
At _
_(_x)i (Fi+ 1 ,j - F i ,j)

Ui, j = ½ Ui, j +Ui,j- __

(2.11)
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where Fi,j = F(Ui,j)" The difference scheme for equation (2.10) is

Ui, j = Ui, j -
Yi,j+l

+U
Ui,j = ½ Ui,j i,j

2At ai, j

- Yi,j-i (bi'j (Fi'j- Fi'j-l) + (Gi'j- Gi'j-l)) '

+ (2.12)

2At ai, j (bl,j(Fi,j +l-_i,j) + (Gi'j+l-Gi'j)) _J
Yi,j+l - Yi,j-i

where

Fi,j = F(Ui,j ) ' Gi,j = G(Ui,j ) '

and

_x i' + = l/a?

bi,j ny i al,j 1,ji,j

= (Yi,j - Yi,j-i )/(yi,j+l- Yi,j )"

Note that the scheme (2.12) is second-order accurate in time and space.

Equations (2.11) and (2.12) define the splitting operators S_(At)

S (At), respectively. The total scheme is then defined by

and

u2n+l T-ISv• . = (At)T S (At)S_(At) U 2nl,J 0 i,j '

_ 2n+l

Ui,j2n+2= s_(at) Sn(At) r-I Sv(At)T U.l,j. '

(2.13)

where T is the transformation from the conserved variables U = (O,0u,Ov,E)

to the physical variables W = (0,u,v,T)',i.e.

W = T(U).
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Note that the operator sequences in (2.13) are reversed in successive time

steps, this is done to maintain the overall second-order accuracy in time.

The stability for each schemeof the splitting requires that the time step

for the schemebe no larger than the largest allowable time step for each

splitting. Let

At_ = min
A_

i,J(_x)i(lul,j[ + ci, j)

At = min

n i,j

At
V

(Yi,j+l - Yi,j-i )/2

Ivi, jl + l_[i j [ui,jl + ci,j/l+ inxl 2' _n Ji,j
Y

mini,jO0i'J ( (_)2 inY,i,j)2 +i_i2)-i
= +

2Y_i, j \ AD \ A_ ! '

where ci, j = /y Pi,j/Oi,j

was chosen as

is the local sound speed. The time step At

At = .9 min(At_,AtN,Atv).

Because of the presence of the transformation T in the scheme (2.13)

the stability of the overall scheme does not follow immediately from the

stability of each of the splitting schemes. However, Abarbanel and Gottlieb

(1980) show that the linearized Navier-Stokes equations can be transformed

to a system which is symmetric. In this symmetric form it is easily seen

that the linearization of the time-split scheme (2.13) is stable since

each of the splittings is stable, (see Abarbanel and Gottlieb (1980)).
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Further splitting of the parabolic operator as advocated bv Abarbanel

and Gottlieb would also be efficient on vector processor.

3. THE APPLICATION

A sketch of the slotted nozzle for which computations were made is

given in Figure I. In the converging portion of the nozzle the flow is sub-

sonic and accelerating. The flow becomes supersonic in the throat region

of the nozzle and continues accelerating in the diverging portion. It has

been shown experimentally by Anders et al. (1977) that the turbulent boundary

layer on the tunnel wall propagates disturbances which interfere with measure-

ments in the test section. The suction slot removes the upstream boundary

layer so that a new boundary layer which remains laminar to a much higher

Reynolds number, begins at the slot lip. The disturbance level of the flow

in the test section is then considerably reduced.

The slot is so designed that the flow within it quickly becomes super-

sonic, and for the computations the outflow boundary in the slot was chosen

so that the flow there would be supersonic.

The computational grid for an inviscid flow is shown in Figure 2.

A finer grid spacing was used near the walls to resolve the boundary

layers for viscous flow computations. The computational domain consisted

of only the area above the centerline since the flow was assumed to be

symmetric about the centerline.

The boundary conditions for the differential equations are as follows.

At inflow, the density, temperature, and flow angle were specified, i.e.

O = P0' T = TO, and u = v tan@(y), (3.1)
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where 8(y) is a specified function. Three boundary conditions are appro-

priate at a subsonic inflow boundary (Oliger and Sundstrom (1978)). At out-

flow the flow is supersonic and no quantities are specified. Along the wall

of the tunnel the no-slip and adiabatic conditions were used, i.e.

BT
u = v = 0 and -- = 0.

_n

The above inflow boundary conditions were chosen because from a one-

dimensional analysis of steady nozzle flow (see Courant and Friedrichs (1948,

p. 377f)) the Mach number at inflow, which is proportional to u//T-, and the

mass flux at inflow, which is the integral of 0u, are determined by the con-

ditions at the nozzle throat and the cross-sectional area ratios. Thus, if

the inflow velocity component u were prescribed along with either T or

p, then a steady flow may not have developed. Also, physically the steady

flow is determined by the temperature and pressure, and hence density, of

the fluid for upstream of the throat. Therefore, among all choices of

three physical variables to specify at the inflow that given by (3.1) is

most natural.

For the difference approximation, all the variables at the outflow

boundary were determined by extrapolation from the interior. At the inflow

boundary, the velocity component u was determined by extrapolation and

then the component v was computed by equation (3.1). Along the wall of the

tunnel the density was determined by extrapolation.
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4. IMPLEMENTATION

To utilize the capabilities of the STARto their best advantage the

problem was organized so that as muchof the computation as possible was

done through long vector operations. The schemepresented in section 2

whenapplied to the problem of section 3 is quite suitable for a vector

processor.

The problem had the advantage of being able to fit entirely in core

memoryon the STARand thus avoided the difficulties of paging data from

the virtual memory. The language used to encode the program was SL/I which

was developed at NASALangley Research Center by Knight (1979).

To implement the difference scheme(2.9) on the STARthe values of

each variable, p, pu, pv, E, etc. were assigned to a vector of length

L equal to the total numberof grid points. Thus, referring to Figure 3

which illustrates the computational domain, p(1), p(2),''', p(IA), p(IA+l),'-"

are the values of the density at the grid points al, a2,.." , aiA , aIA+l,.-..

There are LA =IAx JA points in the lower region, region A, and

LB = IB x JB points in the upper region, region B. The points

bI --. bicJ , ,

represent the same physical points as the points

ak,''', ak+iC_l,

but are distinct in the computational domain and correspond to distinct

vector locations. This line of grid points which is common to both regions

and is doubly represented is called the co_=non line. Note that there is
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no special differencing used at these points and the grid coordinate mapping

is smoothacross this llne.

A vector then consisists of L = LA + LB locations, one location for

each point in region A and region B.

In addition to vectors whoseelements take on numerical values the STAR

also employs bit vectors. Bit vectors are vectors whoseelements take on

logical values and are used to mask out operations. Thus if the vectors

A and B are to be addedunder the control of the bit vector b to give the

result C then when the kth element of b is FALSEthe sum of the kZh elements

of A and B is computedbut is not stored in the k£h location of C. If the

kth element of b is TRUEthen the sumis computedand stored in the kZh loca-

tion of the vector C.

Consider now the simplest splitting (2.11). Each componentof the flux

F is represented by a vector and is computedby vector instructions. Then

the forward difference is taken for all points from index 1 to L-I and the

result is multiplied by _xAt/A_. Each of these are vector operations of

length L-I. However, for those indices k for which the (k+l)St grid

point is not a neighbor of the kZh grid point, the "forward" difference taken

between the fluxes at the indices k and k+l is a physically meaningless

quantity. Thus whenthe results of the forward difference operation are

added to the value of the componentsof U, a bit vector is employedto

maskout those additions involving physically meaningless quantities. By

this meansthe predicted quantities U are computedby equation (2.11).

Those elements of U for which the results of (2.11) where maskedby the

bit vector are computedby different meanssuch as extrapolation or leaving

the value unchangedif it is a specified boundary value. For example, if

zeroZh-order extrapolation is used then the componentsof U at the k£h
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location are set equal to the values of U at the (k-l)St location

under the control of the bit vector which is the negation of that mentioned

above. The corrector portion of equation (2.11) is done similarly.

A computation such as the extrapolation in the example just mentioned

in which the all but a small percentage of the points are maskedmaybe

considered wasteful. However, on the STAR-100Athe alternative is to

employ scalar operations which is quite slow. Thus these "wasteful" opera-

tions maybe the fastest. On the CYBER203, which has a much faster speed

for scalar arithmetic, it is almost certainly more economical to handle the

boundary conditions with scalar operations.

The splitting (2.12) is implemented in a similar fashion, but with the

difference that the forward and backward differences in the N variable

require three vector operations due to the geometry of the computational

domain. For a forward difference, the first operation is for the lower region

A and involves points whose indices in the vector differ by IA. This is

because grid points in region A which are neighbors in the N direction

correspond to vector locations a distance of IA apart. This operation is

valid for all points of region A except the top row. The second vector

operation is to do the samething for region B, but here the neighbors

occupy locations which are IB apart in the vector.

The third operation is to set the values for the points of the common

line which are in part A of the vector, and not computedin the first opera-

tion, equal to the corresponding points in part B of the vector which were

computedin the second operation. These vector operations are of lengths

LA- IA, LB- IB, and IC, respectively. The remaining points are again treated

by an extrapolation.
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To implement the viscous splitting operator required a large number

of temporary vectors. Therefore care was taken so that few, if any,

temporary vectors were generated by the compiler to evaluate complicated

expressions. Thus all computations to compute V(W) in equation (2.5)

were written to involve only two operands. Also the terms such as those in

equation (2.4) were computed in such an order so as to minimize as much as

possible the number of temporary vectors that had to be carried along in the

computation. For example, the values of (_x)i+_,j were computed and stored

in a temporary vector and all those divided differences requiring (_x) i+_2, j

were computed and stored in a temporary vector and all those divided differences

requiring (_qx)i.l,j_ were computed and added to W. Next (_qx)i,. i was

computed and stored in the same temporary vector which had stored (_qx)i_, j.

After all divided differences requiring (_nx)i,j+_ were computed and added

to W the temporary vector was used for another quantity. Through the use of

the LITERALLY statement in SL/I this same temporary vector could be given a

different appropriate name each time its use changed. In this way the viscous

splitting (2.5) could be implemented without using an excess number of tem-

porary vectors which may have caused the storage to exceed the core storage.

As with the n-splitting most of the differences in the viscous splitting

involved three vector operations, one for region A, one for region B, and

one for the common line. The program had to be well documented with comments

to make it understandable.

The calculations were performed using 32-bit arithmetic. The standard

word size on the STAR is 64 bits but through the use of SL/I the half-word

arithmetic can be used giving a substantial increase of speed without a

serious loss of accuracy.
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RESULTS

The numerical method and computer code described here has been used

in design studies for several nozzles, both two-dimensional and axisymmetric.

We present here only the results for a particular two-dimensional slotted

nozzle.

The nozzle contour with the numerically generated grid is shown in

Figure 2. The total number of grid points was 12006. The stagnation pres-

sure and temperature were 3600 psf and 520°R respectively and the Reynolds

number was 3.2 x 105 , being evaluated at the sonic line on the center line

using the throat radius as the reference length.

The computations were started with a flow field derived from an inviscid

one-dimensional analysis (see e.g. Courant and Friedrichs (1948, p. 377f))

with a correction for a boundary layer. The computations were stopped when

the maximum relative change in the density between two successive time steps

was sufficiently small or when the solution appeared to be nearly converged

in the main portion of the nozzle. For the results discussed below this

was achieved in 40,000 time steps in several stages of 2000 or 8000 steps

-5
each. The cpu time per time step per grid point was about i.i x i0

seconds on the CYBER-203.

The Mach number contours for this solution are shown in Figure 4. The

Mach number varied from about .01 at the inflow to 2.0 at the main outflow

and 1.7 at the slot outflow. Figure 5 shows the stream function computed for

this run. The stream function was computed as an approximation to

0

Further results and discussion of these results are presented in Beckwith

and Holley (to appear).
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APPENDIX

Numerical Grid Generation

The procedure for numerically computing the grid for the slotted

nozzle calculations did not use the vector processor, but for complete-

ness it will be briefly described.

The numerical method for the grid generation is essentially that of

Thompson, et al. (1974). The basic idea is to map the computational do-

main consisting of rectangles joined along a portion of one side onto the

physical domain (see Fig. 3). The mapping function x(_) was specified

as a piecewise polynomial defined so that x'(_) was small where clustering

of grid lines was desired, and x"(_) was continuous. The function Y(_,n)

was determined requiring that the inverse function N(x,y) satisfy

_2n + _2 f(<,n)

_2 _y2
(A. i)

on the region surrounded by the contour with

The function f(_,q)

If the Jacobian

can be transformed to

n specified on the boundaries.

will be described later.

J of the mapping is nonvanishing then equation (A.I)

_y_ - 2By_N + yyNN + J2(_xxY _ + f(_,N)yN) = O, (A.2)

on the computational domain illustrated in Figure 2.

equation (A.2) are given by

2 2 2

e = YT]' B = y_y_], ¥ = x_ + y$, and

and note that
3

_xx = -x_/(xE)

The coefficients in

J = x_y n,
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The values of y were specified on the boundary and thus equation (A.2)

is an nonlinear elliptic boundary value problem with Dirichlet boundary

data.

The equation (A.2) was solved by a iterative procedure similar to SOR

but with a variable iteration parameter. The variable parameter was

required because of the high degree of stretching in the grid transformation.

The procedure is discussed in Strikwerda (1980).

The function f(_,N) was determined as follows. On the boundaries

on which x is constant, _ = g0 and f was specified by

f(_0,D) = Nyy = -ynN/(yn) 3. (A.3)

This formula is obtained by observing that at these boundaries it is

desirable to have the coordinate lines to be nearly straight, i. e.

nxx = 0. If Dxx = 0 then from (A.I) we obtain (A.3). Along the boundaries

= 0 and N = i, the value of f was set to zero. To cluster the grid

points near the lip of the slot a large positive value was assigned to f

at the grid point at the lip. The function f(_,N) was then determined by

a polynomial interpolation from these boundary points.

By adjusting the value of f at the tip, the polynomial interpolation,

and the relative number of grid points in regions A and B, satisfactory

grids were obtained quite easily.
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Figure Captions

Figure i.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

A diagram of a two-dimensional nozzle with suction slots.

Grid lines for the slotted nozzle calculation. Insert shows

slot region enlarged.

A schematic diagram of the computational grid and mapping

discussed in Section 4 and the appendix.

Contour plot of Mach number.

Contour plot of the streamfunction.
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Figure 2.
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Figure 4.
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Figure 5.


